
Linguistic richness and technical aspects of an incremental finite-state parser

Hrafn Loftsson∗, Eiríkur Rögnvaldsson†

∗School of Computer Science, Reykjavik University
Kringlan 1, Reykjavik IS-103, Iceland

hrafn@ru.is

†Department of Icelandic, University of Iceland
Árnagarður við Suðurgötu, Reykjavik IS-101, Iceland

eirikur@hi.is

Abstract
We describe the linguistic richness and the technical aspects of an incremental finite-state parser for Icelandic. We argue that our parser
outputs a linguistically rich annotation which in many simple sentences amounts to full parsing. Additionally, we provide arguments
for various technical design and implementation decisions regarding the parser. Our description may be used as guidelines for other
researchers developing similar parsers.

1. Introduction
Syntactic analysis for natural languages is often divided
into two categories: full parsing, in which a complete
analysis for each sentence is computed, and partial (or
shallow) parsing, where sentence parts or chunks are ana-
lysed without building a complete parse tree. The aim
of partial parsing is “to recover syntactic information ef-
ficiently and reliably from unrestricted text, by sacrificing
completeness and depth of analysis” (Abney, 1996).
In many natural language processing (NLP) applications,
it can be sufficient to analyse sentence parts or phrases.
This can be the case, for example, in applications like in-
formation extraction, machine translation, and some types
of grammar checking, in which identification of phrases is
more important than a global parse. Additionally, in cases
of low quality input or spoken language, a partial parsing
method can be more robust than a full parsing method, be-
cause of noise, missing words, and mistakes in the input (Li
and Roth, 2001).
We have developed an incremental finite-state parser, Ice-
Parser, for parsing Icelandic text. IceParser, the first parser
published for the Icelandic language, is designed to be used
both as a stand-alone application and as an integrated part
of an NLP toolkit.
In (Loftsson and Rögnvaldsson, 2007a), we briefly de-
scribed the annotation scheme used by the parser, its in-
dividual modules, evaluation results, and error analysis. In
this paper, we describe in detail the linguistic richness (in
Section 2.) and the technical aspects (in Section 3.) of Ice-
Parser.

2. Linguistic richness
In this section, we describe the main features of our anno-
tation scheme and show how it is applied. We argue that
through the interplay of phrase structure annotation and
syntactic functions annotation, accompanied by relative po-
sition indicators for arguments, we obtain a linguistically
rich annotation which in many simple sentences amounts
to full parsing.

2.1. The annotation scheme
When designing a parser for a natural language, it is im-
portant to outline an annotation scheme. In the context
of shallow parsing this includes deciding what kind of
chunks/phrases and grammatical functions to annotate, and
writing guidelines (general principles) on how to perform
the annotation (Voutilainen, 1997). Additionally, since “the
correct analysis” is not always clear, detailed instructions
may be needed where the general principles are not unam-
biguously applicable.
Voutilainen points out that the annotation scheme (or the
grammatical representation, as he calls it) can be speci-
fied with the help of a grammar definition corpus (GDC).
A GDC is a representative collection of sentences, consis-
tently analysed using the guidelines and the detailed in-
structions. The purpose of the GDC is to “provide an un-
ambiguous answer to the question how to analyse any utter-
ance in the object language” (Voutilainen, 1997). Further-
more, the GDC can be used to help with the development of
the parser itself, because the parser should at least be able
to annotate correctly the sentences in the GDC.
We have designed a shallow annotation scheme (a thor-
ough description of which can be found in (Loftsson and
Rögnvaldsson, 2006)) that follows the dominant paradigm
in treebank annotation, i.e. it is “the kind of theory-neutral
annotation of constituent structure with added functional
tags” (Nivre, 2002). During the design, we focused on mak-
ing the annotation rich enough to be of use in various NLP
applications, in particular, grammar correction. In addition
to the annotation scheme, we constructed a GDC, a cor-
pus consisting of 214 sentences, selected from the Icelandic
Frequency Dictionary (IFD) corpus (Pind et al., 1991). The
selected sentences represent the major syntactic construc-
tions in Icelandic. This GDC was used as the development
corpus for IceParser.
It is assumed that input text, to be annotated according
to our scheme, has been morphologically tagged using
the detailed part-of-speech (POS) tagset of about 700 tags
described in (Pind et al., 1991). Although these tags

are morphological in nature, they also carry a substantial
amount of syntactic information and the tagging is detailed
enough for the syntactic function of words to be more or
less deduced from their morphology and the adjacent words
(Rögnvaldsson, 2006).
Thus, for instance, a noun in the nominative case can rea-
sonably safely be assumed to be a subject, unless it is pre-
ceded by the copula vera ‘to be’ which is in turn preceded
by another noun in the nominative, in which case the sec-
ond noun is a predicative complement. A noun in the ac-
cusative or dative case can in most cases be assumed to be a
(direct or indirect) object, unless it is immediately preceded
by a preposition. As is well known, Icelandic also has ac-
cusative and dative subjects, and even some nominative ob-
jects (Thráinsson, 2007), but these can easily be identified
from their accompanying verbs. We have compiled a list of
those verbs which the parser consults.

2.1.1. Phrase structure annotation
According to our annotation scheme, two labels are at-
tached to each constituent. The first one denotes the begin-
ning of the constituent, the second one denotes the end (e.g.
[NP . . . NP]). The main labels are AdvP, AP, NP, PP and VP
– the standard labels used for phrase annotation (denoting
adverb, adjective, noun, preposition, and verb phrase, re-
spectively).
Additionally, we use the labels CP, SCP, InjP, and MWE for
marking coordinating conjunctions, subordinating conjunc-
tions, interjections, and multiword expressions (of which
we have a list), respectively. Furthermore, we use the labels
APs and NPs, for marking a sequence of adjective phrases
(agreeing in gender, number and case) and noun phrases
(agreeing in case), respectively.
Our scheme subclassifies VPs. A finite verb phrase is la-
belled as [VP . . . VP] and consists of a finite verb, option-
ally followed by a sequence of AdvPs and supine verbs.
Other types of VPs are labelled as [VPx . . . VPx], where
x can have the following values: i, denoting an infinitive
VP; b, denoting a VP which demands a predicative com-
plement (i.e primarily a verb phrase consisting of the verb
vera); s, denoting a supine VP; p, denoting a past participle
VP; g: denoting a present participle VP. Our VPs do not
comprise verbal arguments and hence are strictly speaking
not verb phrases, but rather bare verbs or verbal clusters.
We also distinguish between four kinds of MWEs, i.e. ex-
pressions that function as i) a conjunction (MWE_CP), ii)
an adverb (MWE_AdvP), iii) an adjective (MWE_AP), and
iv) a preposition (MWE_PP).

2.1.2. Syntactic functions annotation
From a linguistic point of view, our constituent structure
bracketing is of course rather primitive and in many ways
incomplete, compared to the description in (Thráinsson,
2007), for instance. The structure it marks is relatively flat,
and, since it is designed for partial parsing, recursiveness is
not shown. Thus, many strings that in a complete parse tree
would be grouped together in a single multi-level structure
are shown as two or more distinct chunks.
Two such examples are shown below (the morphological
tags from the input text are underlined):

(1) [NP niðurstöður (results) nvfn NP] [NP þessara
(these, gen.pl.) favfe rannsókna (research, gen.pl.) nvfe
NP]
‘The results of this research’

(2) [NP húsin (the houses) nhfng NP] [PP í (in) aþ
[NP fæðingarbæ (hometown) nkeþ mínum (mine) fekeþ
NP] PP] [VPb voru (were) sfg3fþ VPb]
‘The houses in my hometown were . . . ’

In (1), the NP þessara rannsókna (gen.pl.) ‘this research’ is
a genitive qualifier of the NP niðurstöður ‘results’. In (2),
the PP í fæðingarbæ mínum ‘in my hometown’ modifies the
NP húsin ‘the houses’. The constituent structure bracketing
does not indicate any connection between the two NPs in
(1), or between the NP and the PP in (2).
The syntactic functions annotation (functional tags), how-
ever, substitutes for the lack of hierarchical constituent
structure to a considerable extent. We use curly brackets
for denoting the beginning and the end of a syntactic func-
tion, as carried out by (Megyesi and Rydin, 1999). Four of
the function labels we use, *SUBJ, *OBJ, *IOBJ, *COMP,
are relatively standard, denoting a subject, an object, an in-
direct object, and a predicative complement, respectively.
To deal with certain important characteristics of Icelandic
syntax, we have added four nonstandard labels to mark NPs
bearing different functions; *OBJAP, *OBJNOM, *QUAL,
*TIMEX, denoting an object of an AP, a nominative object,
a genitive qualifier, and a temporal expression, respectively.
Additionally, for some of the syntactic function labels, we
use relative position indicators (“<” and “>”). For example,
*SUBJ> means that the verb is positioned to the right of
the subject, *SUBJ< denotes that the verb is positioned to
the left, while *SUBJ is used when the accompanying verb
cannot be located, either because it is missing (in gapping
structures, for instance) or because the distance between the
subject and the verb is more than a parser can cope with.
The motivation behind using the indicators is to simplify
grammar checking at later stages. Similar indicators are,
for example, used in the Constraint Grammar Framework
(Karlsson et al., 1995).
By using the syntactic function labels and the relative
position indicators, we manage to show the most important
relations between phrases. Thus, in a sequence of two
adjacent NPs with one of them in the genitive case, as in
(1), the genitive NP is marked as *QUAL in order to show
that it forms a syntactic unit with the other (governing) NP,
as demonstrated in (3):

(3) [NP niðurstöður (results) nvfn NP] {*QUAL [NP
þessara (these, gen.pl.) favfe rannsókna (research, gen.pl.)
nvfe NP] *QUAL}

In a complete sentence, this string as a whole will be
marked as a subject, an object, etc., according to its role in
the sentence, as shown in (4):

(4) {*SUBJ> [NP niðurstöður (results) nvfn NP] {*QUAL
[NP þessara (these, gen.pl.) favfe rannsókna (research,
gen.pl.) nvfe NP] *QUAL} *SUBJ>} [VPb eru (are)

sfg3fn VPb] {*COMP< [AP [AdvP mjög (very) aa AdvP]
óvæntar (surprising) lvfnsf AP] *COMP<}
‘The results of this research are very surprising’

2.1.3. The output of IceParser
IceParser generates output according to the annotation
scheme described above1. In many simple sentences, such
as in (4), the annotation made using this scheme in fact
amounts to a full parse. The phrase structure annotation
and the syntactic functions annotation, together with the
relative position indicators, give us all the information we
need about the structure and the internal dependencies in
this sentence. In more complex sentences, of course, the
parsing may not be as complete as in this one. This is espec-
ially evident in cases of long distance dependencies and in
sentences with embedded clauses and clauses with “gaps”
of some kind, such as relative clauses.
IceParser makes no attempt at resolving PP attachment am-
biguities – all PPs are shown as independent constituents.
In the case of a PP following a sentence-initial NP, as in (2)
above, we could make use of the fact that Icelandic is a V2
language, which does not allow more than one constituent
preceding the finite verb (Thráinsson, 2007). Hence, a PP
following an NP in front of a finite verb must be a part of
this NP. We could of course show this by closing the func-
tion tag of the NP after the PP, but we have not implemented
this yet.

2.2. Use of IceParser in grammar correction
Even though IceParser is designed and implemented as a
partial parser, we believe that its output is sufficiently de-
tailed to be of great use in many NLP applications, such
as in information extraction, grammar correction, and ma-
chine translation. Here we will only briefly illustrate its
potential use in grammar checking tools.
Among the most error-prone features of Icelandic gram-
mar is morphological agreement and morphological gov-
ernment of various types. Verbs agree in person and num-
ber with their subject; predicative adjectives agree in gen-
der, number, and case with the subject of the clause; all
inflected words within a noun phrase agree in gender, num-
ber, and case; verbs govern the case of their subjects and
objects; and so on.
In order to detect errors having to do with agreement or
morphological government, it is especially important to nail
down the relationship between verbs and their arguments. It
has been shown that IceParser does a good job in correctly
identifying subjects and objects (F-measure for subjects
and objects is 90.5% and 88.2%, respectively (Loftsson and
Rögnvaldsson, 2007a)).
In designing the parser, we deliberately chose to make only
minimal use of the morphological information furnished by
the POS tags in the input text. This was done in order to be
able to use the parser in detecting grammatical errors. It
is clear that if the parser relies too heavily on the morpho-
logical features, errors in the input will both result in pars-
ing errors and also severely undermine the usefulness of the

1Strictly speaking, our annotation scheme is independent from
IceParser, i.e. the scheme is designed with a general partial parser
in mind.

parser in grammar checking. Therefore, the parser mainly
uses case features, but other nominal features such as gen-
der and number only in exceptional cases.
Once it has been decided which arguments and predicative
complements belong to a certain verb, it can be checked
whether the subject NP and the verb agree in person and
number. If the verb takes an adjectival complement, it can
be checked whether the subject and the complement agree
in gender and number.
Since the case features of the morphological tags are used
in the parse, it might seem that the parser cannot be used
in detecting errors in the case government of verbs, for in-
stance. However, the case feature is mainly used to dis-
tinguish between subjects (bearing nominative case, except
with certain verbs of which we have a list as mentioned
above) and (direct and indirect) objects (bearing oblique
case, i.e. accusative, dative, or genitive). Thus, the distinc-
tion between the three oblique cases is not crucial for the
parse. Most case errors that we find in texts involve some
mixup between the oblique cases, rather than between the
nominative and one of the oblique cases. Hence, the parser
can be used in detecting such errors.
Of course, full parsing, with pronoun resolution etc., would
enable us to detect more grammatical errors than our
shallow parsing. However, we feel confident that our
method will bring us a long way towards useful NLP tools
for Icelandic, due to the linguistic richness of the morpho-
logical tags and the syntactic annotation scheme.

3. Technical aspects
In this section, we discuss some technical aspects of Ice-
Parser. Our aim is to provide arguments for various tech-
nical design and implementation decisions, i.e. with regard
to the development methodology used, the utilisation of the
lexical analyser generator tool JFlex, optimisation, and the
integration of IceParser into our NLP toolkit.

3.1. Development methodology
At the very beginning of the parsing project, we decided to
base IceParser on the incremental finite-state approach, in
which a parser comprises a sequence of finite-state trans-
ducers (Grefenstette, 1996; Abney, 1997). The purpose
of the transducers is to add syntactic information into run-
ning text in an incremental manner. This method is some-
times referred to as the constructive approach to distinguish
it from the reductionist approach by (Koskenniemi et al.,
1992) .
The reason for selecting this approach was mainly three-
fold. First, no treebank exists for Icelandic, and using
a data-driven parsing method was therefore not an op-
tion. Secondly, earlier incremental finite-state parsing work
has proven successful for various languages, e.g. Span-
ish (Molina et al., 1999), Swedish (Megyesi and Rydin,
1999), German (Müller, 2004), and French (Aït-Mokhtar
and Chanod, 1997). Lastly, parsers built using finite-state
methods are usually robust and fast, because they are, in
fact, just a pipeline of lexical analysers.
Incremental finite-state parsers are developed by specify-
ing patterns, in the form of regular expressions, for match-
ing specific syntactic constructions (substrings) in the input

text. Syntactic markers or labels can then be inserted into
the input text by associating an action with the appropriate
pattern. The syntactic patterns are usually handwritten and
thus often demand both computer science knowledge (with
regard to regular expressions and finite automata) and lin-
guistic knowledge (of the language being parsed). In fact,
our team consists of a computer scientist and a linguist.
Input to IceParser is POS tagged text, using the tagset men-
tioned in Section 2.1. The parser consists of two main com-
ponents: a phrase structure module (13 transducers) and a
syntactic functions module (9 transducers). The purpose of
the modular architecture “is to facilitate the work during
development, to allow different uses of the parser and to re-
flect the different linguistic knowledge that is built into the
parser” (Megyesi and Rydin, 1999). In both modules, the
output of one transducer serves as the input to the following
transducer in the sequence.
Table 1 lists the 22 transducers (in the order in which they
are executed) along with a short description of their pur-
pose. The transducers in the upper half of the table belong
to the phrase structure module, and the ones in the bottom
half belong to the syntactic functions module. Please refer
to (Loftsson and Rögnvaldsson, 2007a; Loftsson, 2007b)
for a detailed description of all the transducers used in Ice-
Parser.

3.2. Utilisation of JFlex
The Xerox Finite-State Tool (XFST) (Karttunen et al.,
1996) is often used to develop finite-state parsers (cf.
(Megyesi and Rydin, 1999; Aït-Mokhtar and Chanod,
1997)). The XFST includes extensions to the standard
regular expression calculus, which simplify the creation
of finite-state transducers for syntactic processing. When
using the XFST for parser development, the development
team defines syntactic patterns, in the form of extended reg-
ular expressions, which are then compiled into finite-state
transducers. When running the resulting parser (i.e. the set
of transducers) on input text, the transducers are interpreted
by a run-time engine built into the tool.
We decided not to use the XFST for the development of
IceParser. There are mainly two reasons for this decision.
First, since the transducers are interpreted by the XFST, its
run-time engine needs to be distributed to all parties inter-
ested in using the parser. Hence, licensing issues may com-
plicate the distribution of the parser. Secondly, we wanted
our parser to be an integrated part of our NLP toolkit (Lofts-
son and Rögnvaldsson, 2007b), all modules of which are
written in Java. In order to simplify the integration of Ice-
Parser into the toolkit, and to simplify distribution of the
parser, we thus decided to write the parser in a utility which
produces Java code.
Our parser is written using the lexical analyser generator
tool JFlex (http://jflex.de/). Each transducer is written in
a separate specification file, which is compiled into Java
code using JFlex. The resulting Java code is a determin-
istic finite-state automaton, along with actions (Java code)
to execute for each matched pattern. The purpose of the
actions is to insert syntactic labels into substrings of the in-
put text. The patterns for each transducer are written using
the regular expressions language of JFlex. The only non-

standard operator of JFlex is ∼a, which matches every-
thing up to (and including) the first occurrence of the input
matched by a.
As an illustration of the rule and action format of
JFlex, consider the following example, taken from the
Phrase_MWEP1 transducer which recognises specific
MWEs consisting of the preposition fyrir followed by spe-
cific adverbs:

%{
String Open=" [MWE_PP ";
String Close=" MWE_PP] ";

%}

AdverbPart = {WS}+{AdverbTag}
PrepPart = {WS}+{PrepTag}

Pair = [fF]yrir{PrepPart}(aftan|austan
|framan|neðan|norðan|ofan|sunnan
|utan|vestan){AdverbPart}

%%
{Pair} {out.write(Open+yytext()+Close);}

The code included in %{ and %} is copied directly into the
generated Java source code.
Two regular definitions2, AdverbPart and PrepPart, define
the adverb part and the preposition part of the <preposition,
adverb> pair, respectively. For example, the adverb part
consists of one or more white spaces ({WS}+) followed by
an AdverbTag. AdverbTag is a name defined in a special
file, which is included by most of the transducers (PrepPart
is defined similarly):

AdverbTag = aa[me]?{WS}+

i.e. the letters aa optionally followed by the letters m or e
and postfixed with one or more white spaces. Finally, the
name Pair is defined as the preposition fyrir followed by
specific adverbs.
Actions are included inside curly brackets. Thus, when
the generated lexical analyser recognises the pattern Pair
the action is simply to put the appropriate brackets and
labels around it (obtained by the function call yytext()).
For example, for the MWE fyrir aftan ‘behind’ the result is:

(5) [MWE_PP fyrir ao aftan aa MWE_PP]
(ao and aa are the POS tags denoting preposition and
adverb, respectively.)

Note that the action described above is a simple implemen-
tation of the left to right longest match markup replace op-
erator, described in (Karttunen et al., 1996). This operator
is a part of the XFST, in which it is specified by using the
following syntax:

A @-> B ... C

A transducer using this operator then inserts the strings
(markers) B and C around the longest string matched by
regular expression A.

2Regular definitions are a sequence of definitions of the form:
di -> ri, where each di is a distinct name and each ri is a regular
expression which may refer to names d1 . . . di−1.

Name Purpose
Phrase_MWE Marks MWEs: common bi- and trigrams.
Phrase_MWEP1 Marks MWEs: specific <preposition, adverb> pairs.
Phrase_MWEP2 Marks MWEs: specific <adverb, preposition> pairs.
Phrase_AdvP Marks adverb, conjunction, and interjection phrases.
Phrase_AP Marks adjective phrases.
Case_AP Adds case information to adjective phrases.
Phrase_APs Groups together a sequence of adjective phrases.
Phrase_NP Marks noun phrases.
Phrase_VP Marks verb phrases.
Case_NP Adds case information to noun phrases.
Phrase_NPs Groups together a sequence of noun phrases.
Phrase_PP Marks prepositional phrases.
Clean1 Corrects special kind of annotation errors.
Func_TIMEX Marks temporal expressions.
Func_QUAL Marks genitive qualifiers.
Func_SUBJ Marks subjects.
Func_COMP Marks complements.
Func_OBJ Marks direct objects.
Func_OBJ2 Marks indirect objects.
Func_OBJ3 Marks dative objects of complement adjective phrases.
Func_SUBJ2 Marks “stand-alone” nominative noun phrases.
Clean2 Cleans up, e.g. superfluous white spaces.

Table 1: A brief description of all the transducers.

3.3. Optimisation
In the first version of IceParser (and presumably in most in-
cremental finite-state parsers), the output file of one trans-
ducer is used as the input file to the next transducer in the
sequence. This version processes about 14,900 word-tag
pairs per second (running on a Dell Precision M4300, Intel
Core 2 Duo CPU, 2.2 GHz).
Note that, by writing the parser in Java/JFlex, we have full
control of the source code. This has enabled us to build an
optimised version of IceParser. In the optimised version,
instead of making the transducers read and write to files,
we make them read from, and write directly to, memory.
The following Java function parse illustrates how the out-
put of one transducer is used as input to the next transducer
in the sequence, without reading and writing to files.

0) parse(String text) {
...
1) StringReader sr=new StringReader();
2) StringWriter sw=new StringWriter();
3) advp=new Phrase_AdvP(sr);
4) ap=new Phrase_AP(sr);
5) advp.yyreset(sr);
6) advp.parse(sw);
7) sr=new StringReader(sw.toString());
8) sw=new StringWriter();
9) ap.yyreset(sr);
10)ap.parse(sw);
...
}

Line 0) is the signature of the function parse, which is
called once for every line in a file containing the text to
be parsed. Lines 1), 2), 7), and 8) create instances of

the StringReader and StringWriter Java classes. Lines 3)
and 4) create instances of the Phrase_AdvP and Phrase_AP
classes, whose source files were automatically created by
the JFLex tool from a corresponding regular expression
specification file (as discussed in Section 3.2.). Lines 5)
and 9) reset the corresponding lexical analyser to read from
a new input stream. Lines 6) and 10) call the parse method
in the corresponding transducers (see below). Moreover,
lines 6), 7), and 9) show how the output of the Phrase_AdvP
transducer is used as input to the Phrase_AP transducer.
The parse method of the transducers tries to match the in-
put to its patterns and carry out the associated action. Its
implementation is simple:

parse(java.io.Writer _out)
{

out = _out;
while (!zzAtEOF)

yylex();
}

Note that methods starting with the letters yy (like yyreset()
and yylex()) and variables starting with the letters zz (like
zzAtEOF) are automatically generated by the JFlex tool.
The out variable, which is an instance of the Writer class,
is used in the actions to transduce the output (as shown in
the last line of the code example for the Phrase_MWEP1
transducer in Section 3.2.).
This optimised version of IceParser annotates the whole
POS tagged IFD corpus, consisting of 590,297 word-tag
pairs (36,922 sentences), in just over 23 seconds. This is
equivalent to about 25,200 word-tag pairs per second, re-
sulting in a speed increase of about 70% compared to the
first version of the parser.

3.4. Integration into our NLP toolkit
Since IceParser is written in Java, we were able to inte-
grate it easily into our NLP toolkit, IceNLP. The toolkit
works in the following manner. First, the input text is to-
kenised. Secondly, sentence segmentation is carried out.
Thirdly, POS tagging for each input sentence is performed
(using IceTagger, a linguistic rule-based tagger (Loftsson,
2007a)), and, lastly, each POS tagged sentence is partially
parsed with IceParser.
The optimised version of IceParser is used in IceNLP. A
POS tagged sentence is not written to an output file, but is
instead fed directly to IceParser in the manner described in
Section 3.3. The result is an efficient combined POS tagg-
ing and partial parsing utility3.

4. Conclusion
In this paper, we have described the linguistic richness and
the technical aspects of IceParser, an incremental finite-
state parser for Icelandic. We discussed the linguistic rich-
ness of the output generated by the parser and argued that
for many simple sentences the output amounts to full pars-
ing. Additionally, we described technical aspects of the
parser, in particular, various design and implementation de-
tails. Our description may be used as guidelines for other
researchers developing similar parsers.

5. Acknowledgements
Thanks to the Institute of Lexicography at the University of
Iceland, for providing access to the IFD corpus used in this
research.
The development of IceParser was partly supported by the
Icelandic Research Fund, grant 060010021, “Shallow pars-
ing of Icelandic text”.

6. References
S. Abney. 1996. Part-of-Speech Tagging and Partial Pars-

ing. In K. Church, S. Young, and G. Bloothooft, edi-
tors, Corpus-Based Methods in Language and Speech.
Kluwer Academic Publishers.

S. Abney. 1997. Partial Parsing via Finite-State Cascades.
Natural Language Engineering, 2(4):337–344.

S. Aït-Mokhtar and J.-P. Chanod. 1997. Incremental
Finite-State Parsing. In Proceedings of Applied Natural
Language Processing, Washington DC, USA.

G. Grefenstette. 1996. Light Parsing as Finite State Filter-
ing. In Proceedings of the ECAI ’96 workshop on “Ex-
tended finite state models of language”, Budapest, Hun-
gary.

F. Karlsson, A. Voutilainen, J. Heikkilä, and A. Anttila.
1995. Constraint Grammar: A Language-Independent
System for Parsing Unrestricted Text. Mouton de
Gruyter, Berlin, Germany.

L. Karttunen, J.-P. Chanod, Grefenstette, G., and
A. Schiller. 1996. Regular expressions for language
engineering. Natural Language Engineering, 2(4):305–
328.

3Please visit http://nlp.ru.is for tagging and parsing
Icelandic text.

K. Koskenniemi, P. Tapanainen, and A. Voutilainen. 1992.
Compiling and using finite-state syntactic rules. In Pro-
ceedings of the 14th International Conference on Com-
putational Linguistics, Nantes, France.

X. Li and D. Roth. 2001. Exploring Evidence for Shallow
Parsing. In Proceedings of the 5th Conference on
Computational Natural Language Learning, Toulouse,
France.

H. Loftsson and E. Rögnvaldsson. 2006. A shallow syn-
tactic annotation scheme for Icelandic text. Technical
Report RUTR-SSE06004, Department of Computer Sci-
ence, Reykjavik University.

H. Loftsson and E. Rögnvaldsson. 2007a. IceParser: An
Incremental Finite-State Parser for Icelandic. In Pro-
ceedings of NoDaLiDa 2007, Tartu, Estonia.

H. Loftsson and E. Rögnvaldsson. 2007b. IceNLP: A Nat-
ural Language Processing Toolkit for Icelandic. In Pro-
ceedings of Interspeech 2007, Special Session: “Speech
and language technology for less-resourced languages”,
Antwerp, Belgium.

H. Loftsson. 2007a. Tagging Icelandic Text using a Lin-
guistic and a Statistical Tagger. In Human Language
Technologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics, Rochester, NY, USA.

H. Loftsson. 2007b. Tagging and Parsing Icelandic Text.
Ph.D. thesis, University of Sheffield, Sheffield, UK.

B. Megyesi and S. Rydin. 1999. Towards a Finite-State
Parser for Swedish. In Proceedings of NoDaLiDa 1999,
Throndheim, Norway.

A. Molina, F. Pla, L. Moreno, and N. Prieto. 1999.
APOLN: A Partial Parser of Unrestricted Text. In Pro-
ceedings of SNRFAI99, Bilbao, Spain.

F-H. Müller. 2004. Annotating Grammatical Functions
in German Using Finite-State Cascades. In 20th In-
ternational Conference on Computational Linguistics,
Geneva, Switzerland.

J. Nivre. 2002. What kinds of trees grow in Swedish soil?
A Comparison of Four Annotation Schemes for Swedish.
In Proceedings of the 1st Workshop on Treebanks and
Linguistic Theories, Sozopol, Bulgaria.

J. Pind, F. Magnússon, and S. Briem. 1991. Íslensk
orðtíðnibók [The Icelandic Frequency Dictionary]. The
Institute of Lexicography, University of Iceland, Reyk-
javik, Iceland.

E. Rögnvaldsson. 2006. The Corpus of Spoken Icelandic
and its Morphosyntactic Annotation. In Treebanking for
Discourse and Speech. Proceedings of the NODALIDA
2005 Special Session on Treebanks for Spoken Language
and Discourse, Copenhagen, Denmark.

H. Thráinsson. 2007. The Syntax of Icelandic. Cambridge
University Press, Cambridge.

A. Voutilainen. 1997. Designing a (Finite-State) Parsing
Grammar. In E. Roche and Y. Schabes, editors, Finite-
State Language Processing. MIT Press.

